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Google playstore app  

SECTION 1 

I got the Google Play Store dataset which had the attributes App, Category, Rating, Reviews, 
Size, Installs, Type, Price, Content rating, Genres, Last updated, Current ver, Android ver. I 
found quite a deep breath of work on this dataset and therefore was intrigued to use that as my 
inspiration.
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Aim: 
1. To predict the number of installs for each category based on ratings, reviews and price

The following are the two precedents that used the same dataset:

1. https://www.kaggle.com/shikhabains/google-reviews-prediction/notebook
2. https://www.kaggle.com/lava18/all-that-you-need-to-know-about-the-android-market
(The second analysis gives a good understanding of how I can approach this data going
forward.)

SECTION 2 

Raw features provided: App, Category, Rating, Reviews, Size, Installs, Type, Price, 
Content rating, Genres, Last updated, Current ver, Android ver

Features kept: Category, Rating, Reviews, Installs, Type, Price

Features modified: Installs to Number of installs range,  ‘Type’ to numerical from a 
nominal attribute. 

The following pre-formatting was performed on the data: 
1. Size: Initially converted all app sizes into MB. After performing basic analysis, I

found out that it wasn’t contributing much to the aim of my analysis and therefore
deleted the ‘Size’ attribute.

2. Number of installs: Took out ‘+’ from the number of installs’ values. Further,
since the range of the number of installs was really big i.e. 0-5000k, I took
ranges of the number of installs such as 0-1000 and so on and assigned
instances to each based on that in such a way that each bucket contained
almost the same amount of instances. This was done to ease out the analysis
process such that it takes up less computational power and hopefully get more
accurate results.

3. I deleted some of the repetitive attributes and the ones that didn’t contribute a lot
to my aim for this project.

4. Type: Converted this attribute to numerical i.e. 0 and 1 from a nominal one which
had ‘TRUE’ and ‘FALSE’ as its class values.

Class value chosen for prediction: Number of Installs
This data was gathered directly from the Google Play Store.

Initial data exploration:
Correlation matrix

https://www.kaggle.com/shikhabains/google-reviews-prediction/notebook
https://www.kaggle.com/lava18/all-that-you-need-to-know-about-the-android-market
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SECTION 3  

1. Basic Error Data Analysis:
When I saw the dataset, I knew I had to re-format the ‘installs’ attribute and therefore my 
first step was to normalize the attribute values using the formula [(Value- Min)/(Max-Min)]. 
As observed in the Visualize section, it immediately showed that it was still creating 
problems.
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I wasn’t able to perform even simple linear regression on this data with the class value as 
‘installs’ as the range was too big and therefore I tried to analyze the data using Lazy weight 
learners which gave me an RRSE of 25%.

Clustering

I also decided to cluster my initial data to get a sense of how categories get clustered 
together to understand certain patterns in the dataset.
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Using the classes to clusters evaluation where class value is ‘Install range’, it can be seen 
that the majority of Photography as a category with a paid type and above 4.4 rating belong 
to Cluster 0. The Cluster 1 majority contains Parenting, Cluster 2 contains Health and 
fitness and finally Cluster 3 majorly contains Food and drink. All contain majorly Free apps 
i.e. 0 and have a rating above 4. This categorization is not completely reliable as there are 
about 65% incorrectly classified instances.

2. Problematic Features: ‘Installs’ attribute as it had a huge range 0-5000K and the ‘Size’
of the app’ as its class values were in different units. Another problem encountered was
that the attribute ‘Genres’ was very similar to ‘Category’ but just a little more detailed
and therefore I found it being repetitive and not really contributing to the analysis but just
taking more computational power.

3. Ideas for improvement:
- For Installs: I initially normalized the attribute values which didn’t work as it was giving

me an even larger Root relative squared error (RRSE) value which is bad. I finally decided 
to make the attribute values nominal i.e. bucketed class values such that distribution of 
instances was almost same.This helped simplify the analysis and reduce the amount of 
computational power required.
- For Size: I didn’t see too much contribution of size of the app towards the aim of my
analysis.
- Other improvement: Removed multiple attributes such  as Last updated, Current ver,

Android ver and Content rating to make the analysis process more streamlined.
- Tests: After reconfiguring my data, I tried the following analysis:
1. Logistic regression on cv set | Accuracy: 82.0967% | RRSE: 58.7481%



Tarika Jain


2. JRip rule on cv set | Accuracy: 83.8345% | RRSE: 59.5234%

3. J48 decision trees on cv set | Accuracy: 84.2913% | RRSE: 57.9563%

4. Random forests on cv set | Accuracy: 82.9197% | RRSE: 57.6768%
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5. LWL on cv set | Accuracy: 57.838% | RRSE: 83.3016%

As J48 turned out be the best performing algorithm on my cross-validation dataset with 
highest accuracy rate and lowest RRSE comparatively, I decided to go ahead with this. 
The RRSE is still very high which means that the 15% of the incorrectly classified 
instances will be quite far away from the actual instance values.
Reason: I think the reason J48 worked the best in this scenario was because my class 
value is to predict the number of installs based on the categories, number of ratings and 
reviews, type and price which can be understood very well based on setting rules and 
taking a top-down approach whereby the decision tree is first splitting the training data 
through the number of reviews as the node (<=268, >268) and then further dividing 
based on type and price. Further, it again divides using the number of reviews and then 
finally by category. 
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- After looking at this distribution, I thought it might be a good idea to remove the
attribute of ‘Type’ to see if the distribution gets more simplified and maybe provide for a
better accuracy but it was a little less so I decided not to go with that idea.

Training the model using J48 decision tree algorithm on cv set | Accuracy: 84.2913% 

Testing the model using J48 decision tree algorithm on dev set | Accuracy: 87%
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4. Evaluation:

A. Based on the J48 results on the dev set, I also tried bagging to train the data for better
results and then test with the dev set.
The accuracy improved a little to 84.3876% and on the dev set the accuracy was 88%
which was really good.
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B. Finally, I performed tuning in the next section on the best performing model to see if I
can improve the accuracy of the model by tinkering the minNumObj.

SECTION 4 

Based on my initial experimentation with multiple algorithms on the complete cross-
validation set and further using that training results for prediction evaluation on my dev set, I 
decided to take the best performing algorithm which was the J48 decision tree algorithm on 
my dataset for my tuning process for classification. I decided to tune the minNumObj 
parameter. Range tuned is 1-3. 

Average of each performance based on percent correct: 

Fold Train set 
performa
nce for 
exponent 
= 1

Train set 
performa
nce for 
exponent 
= 2

Train set 
performa
nce for 
exponent 
= 3

Optimal 
Setting

Test set 
performa
nce -OS

Default 
Setting

Test set 
performa
nce - DS

1 83.74 83.64 83.76 3 84.5714 2 84.4082

2 85.94 85.29 85.13 1 83.1837 2 82.5306

3 83.88 83.95 83.89 2 84.0 2 84.0

4 84.12 84.12 84.06 1 84.898 2 84.6531

5 83.79 83.90 84.02 3 83.9052 2 83.7418

Average 84.294 84.18 84.172 84.11166 83.86674
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Performance of exponent 1 = 84.294 
Performance of exponent 2 = 84.18 
Performance of exponent 3 = 84.172 

By taking the difference between the Optimal and default setting on the test set performance 
average and performing a t-test on it, I found out that the P value is 0.08899883 which is more 
than 0.05 and that means that the model with the new settings shows insignificant improvement 
from its default settings i.e. 2 as the minNumObj; therefore tuning was not worth it.  

Paired T-test  

SECTION 5 

Step 1: Testing on the trained model using the J48 decision tree algorithm with default 
settings as the best found settings.
Accuracy: 88.1356% | RRSE: 53.4142%
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Step 2: Testing on the trained model using the J48 decision tree algorithm with default 
settings as the best found settings and adding an ensemble method of bagging to it. 

Accuracy: 86.4407% | RRSE: 50.5396%
While the accuracy increased while testing on the dev set using bagging, the accuracy 
decreased with the test set using bagging. I therefore decided to not consider this 
method in my analyzation further. 
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Step 3: Testing on the trained model using the J48 decision tree algorithm with default 
settings as the best found settings and performing cost- sensitive analysis on it to try to 
improve performance.

The performance didn’t improve but actually got a little worse.


I therefore finally went with the first model without the bagging or the cost-sensitive analysis as 
it gave the best results on the final test set.


SECTION 6 
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Based on the best performing model above which has an accuracy of 88.1356%, it can be 
concluded that majority of the instances from a test set would be correctly predicted into 
one of the 4 ranges for the number of installs thereby suggesting that given a particular 
category, rating, number of reviews, type and price of app, it is an 88% chance that number 
of installs for that app category will be correctly predicted.

Through this project I learnt a lot about the benefits and disadvantages of various 
algorithms which helped in understanding how to build the best prediction model. 


